WAREHOUSE ROBOTICS:
STATE OF THE ART AND RESEARCH OPPORTUNITIES

RENE DE KOSTER
ERASMUS UNIVERSITY ROTTERDAM

2018 FRANQUI CHAIR, UNIVERSITY OF HASSELT

The business school that thinks and lives in the future

AUTOMATED STORAGE SYSTEMS

Classic automation

Robotic/autonomous systems

Crane/truck-based

Shuttle/lift based

Single/multi deep

• AS/RS

• AVS/RS

• Perfect pick

• Shuttle/transfer car

• Rackracer

• Flow rack

• (Mobile) Pick AGVs

Static rack

Moveable rack

• RMFS

Loads on shuttles

• PBS

Pick stations

• Manual picking

• Robot picking

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018
FULLY ROBOTIC WAREHOUSES?

FULLY ROBOTIC WAREHOUSES EXIST

Inbound truck arrives → 1. Palletized goods arrival

Conveyor transport → 2. Storage in AS/RS system

Unit load retrieval → 3. Robot destack pallet

3. Robot destack pallet → 4. Store individual cases in AVS/R system

Ordered case retrieval → 5. Sequence cases in customers' layout sequence

5. Sequence cases in customers' layout sequence → 6. Build pallet/roll cage

Ship to store → Outbound truck arrives
THE LAST FRONTIER: ROBOTIZED ROLL CAGE STACKING

It is already there!

• Picking robots (still slow, expensive)
• Dispensing systems with roll cage stacking (becoming common in warehouses of retail chains)

AUTOMATED STORAGE SYSTEMS

Crane/truck-based

Shuttle/lift based

Static rack

moveable rack
 • RMFS

Single/multi deep
 • AS/RS
 • AVS/RS
 • Rackracer
 • Perfect pick
 • Autostore
 • Shuttle/transfer car

Loads on shuttles
 • PBS
 • Shuttle sorting

Picks stations
 • Manual picking
 • Robot picking

AGV based
 • PS AGVs
 • (Mobile) Pick AGVs
AUTOMATED STORAGE SYSTEMS

- Automated storage systems
 - Crane/truck-based
 - Shuttle/lift based
 - Single/double deep
 - Multi-deep:
 - AS/RS
 - Captive satellite
 - Roaming satellite
 - Conveyor
 - Rotating conveyor
 - Push-back rack
 - Flow rack
 - Single/multi deep
 - AVS/RS
 - Rackracer
 - Perfect pick
 - Autostore
 - Shuttle/transfer car
 - Loads on shuttles
 - PBS
 - Shuttle sorting
 - Pick stations
 - Manual picking
 - Robot picking
 - AGV based
 - PS AGVs
 - (Mobile) Pick AGVs
 - Moveable rack
 - RMFS
 - Static rack

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018
AUTOMATED STORAGE SYSTEMS

Crane/truck-based

- Single/double deep
 - AS/RS

Shuttle/lift based

- Single/multi deep
 - AVS/RS
 - Rackracer
 - Perfect pick
 - AutoStore
 - Shuttle/transfer car

Static rack

- Loads on shuttles
 - PBS
 - Shuttle sorting

- Pick stations
 - Manual picking
 - Robot picking

Moveable rack

- RMFS

AGV based

- PS AGVs
- (Mobile) Pick AGVs

Single/multi deep

- Captive satellite
- Roaming satellite
- Conveyor
- Rotating conveyor
- Push-back rack
- Flow rack

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018
AUTOMATED STORAGE SYSTEMS

Crane/truck-based

Shuttle/lift based

Single/double deep
 • AS/RS
Multi-deep:
 • Captive satellite
 • Roaming satellite
 • Conveyor
 • Rotating conveyor
 • Push-back rack
 • Flow rack

Static rack

Load on shuttles
 • RMFS
 • (Mobile) Pick AGVs

AGV based
 • PS AGVs

NEW, ROBOTIZED STORAGE/PICKING SYSTEMS

A. Shuttle based (AVS/R) systems
 – Horizontal (Autostore)

B. Shuttle based, dynamic racks: Movable robots (RMFS: Kiva)

C. Loads on shuttles
 – Puzzle-based storage: PBS
 – Shuttle-based sorting

D. Pick stations

E. Picking with AGVs
 – PS AGVs
 – Mobile pick AGVs
FULLY ROBOTIC WAREHOUSES EXIST

A. AVS/R SYSTEMS
(AUTONOMOUS VEHICLE-BASED STORAGE AND RETRIEVAL)

Horizontal movement only:
- Savoye
- Symbolic
- Knapp
- Vanderlande (Adapto)
- Dematic
- SSI Schafer
- Etc.

Horizontal + vertical movement:
- Autostore (lifting capabilities)
- OPEX: Perfect Pick
- Exotec Skypods

Horizontal + diagonal movement:
- Fraunhofer IML (rack creeper)
A. AVS/R SYSTEMS

Horizontal movement only:
- Savoye
- Symbotic
- Knapp
- Vanderlande (Adapto)
- Dematic
- SSI Schafer
- Etc.

Horizontal + vertical movement:
- Autostore (lifting capabilities)
- OPEX: Perfect Pick
- Exotec Skypods

Horizontal + diagonal movement:
- Fraunhofer IML (rack creeper)

RESEARCH ON AUTOSTORE

Zou, De Koster, Xu, Transportation Science, 2018

Research questions
- Dedicated storage, or shared storage?
- Zoned storage or not?
- ...

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018
Autostore—System cost optimization

Given: throughput, storage capacity, #products

\[N = 10,000\]
\[C_R = \€ 30,000 \text{ amortized in 7 years}\]
\[C_{FS} = \€ 40 \text{ amortized in 10 years}\]
\[C_S = \€ 500/m^2 \text{ amortized in 30 years}\]

4 pick stations
\[\lambda = 300 \text{ picks/hour, 10 sec/pick}\]

\[\min TC(H, r, R, P_A, P_B, P_C) = C_R \cdot R + C_{SP} \cdot L \cdot W + C_{FS} \cdot L \cdot W \cdot H\]

\[N_{st} \leq L \cdot W\]
\[THT_{DC}(L, W, H, R) \leq THT_{DC_{max}}\]
\[L \leq L \text{, } W \leq W \text{, } H \leq H\]

\[s.t.\]
\[D_i = s(i/N)^{(r-1)}, i = 1, 2, \cdots, N\]
\[r = \frac{H \cdot W}{L}\]
\[P_A + P_B + P_C = 1, 0 < P_A < 1, 0 < P_B < 1, 0 < P_C < 1\]
\[N, \lambda, t_{move}, K, r \text{ are given}\]
Autostore—System cost optimization

\[N = 10,000 \]
\[C_R = € 30,000 \text{ amortized in 7 years} \]
\[C_{SP} = € 40 \text{ amortized in 10 years} \]
\[C_{FS} = € 500/m^2 \text{ amortized in 30 years} \]

4 pick stations
\[\lambda = 300 \text{ picks/hour, 10 sec/pick} \]

\[
\begin{align*}
\min \, TC & (H, r, R, P_A, P_B) = C_R \cdot R + C_{SP} \cdot L \cdot W + C_{FS} \cdot L \cdot W \cdot H \\
N_{st} & \leq L \cdot W \\
THT_Dc (L, W, H, R) & \leq THT_{DC, \text{max}} \\
L & \leq L, W \leq W, H \leq H \\
D_i & = s(i/N)^{(s-1)}, i = 1, 2, \ldots, N \\
r & = \frac{W}{r} \\
P_A + P_B + P_C & = 1, 0 < P_A < 1, 0 < P_B < 1, 0 < P_C < 1 \\
N, \lambda, \tau_{wo}, \lambda, r & \text{ are given}
\end{align*}
\]

B. ROBOTIC MOBILE FULFILMENT SYSTEMS
MOVABLE ROBOTS (AGV)

AGVs transporting racks
- Kiva (Amazon Robotics)
- Grey Orange
- Swisslog/Grenzebach
- Scallog
- Suning
- Etc.
RECENT RESEARCH ON RMF SYSTEMS

- Lamballais et al. (EJOR, 2017)
 Objective: minimizing order throughput time.
- Zou et al. (EJOR, 2017)
 Objective: impact of battery charging policies
- Boysen et al. (EJOR, 2017)
 Objective: determine slotting strategy for pods

...
LOADS ON SHUTTLES - SORTING

GridStore/GridSort – Gue/Furmans

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

PUZZLE-BASED STORAGE/SORTING

Little literature yet

- Gue, Kim, *NRL*, 2007: optimal movement patterns
D. ADVANCED PICK STATIONS

1. Palletized goods arrival
2. Storage in AS/RS system
3. Robots destack pallet
4. Store individual cases in AVS/RS system
5. Sequence cases in customers' layout sequence
6. Build pallet/roll cage
7. Buffer pallets/roll cages in OCB

AUTOMATED STORAGE SYSTEMS

Crane/truck-based
- Single/deep
 - AS/RS
- Multi-deep:
 - Captive satellite
 - Roaming satellite
 - Conveyor
 - Rotating conveyor
 - Push-back rack
 - Flow rack

Shuttle/lift based
- Single/multi-deep
 - AVS/RS
 - Rackracer
 - Perfect pick
 - Autostore
 - Shuttle/transfer car

- Static rack

- moveable rack
 - RMFS

AGV based
- PS AGVs
- (Mobile) Pick AGVs

Loads on shuttles
- PBS
- Shuttle sorting

Pick stations
- Manual picking
- Robot picking
E. PICKING WITH AGVS
MANUAL WORKING WITH THE ROBOT/AGV

Fetch Robotics

MODELING PS-AGVS
ROBOTIZED: FULLY AUTOMATED PICKING?

TORU - Magazino

RESEARCH OPPORTUNITIES
RESEARCH OPPORTUNITIES

Most systems shown have hardly been researched
Only (to some extent): RMF, AVS/R systems

Opportunities:
• Manual order picking with AGVs
 – Routing, control, assignment
• Integrated systems: AVS/R system with order picking
• Interaction man – robot: Operator 4.0

Research questions:
• How do they compare to other (manual) systems?
• How to divide work in robot and human tasks?
• How do humans perform with such systems?
• How to select systems?
• How to design: layout, #workstations, #robots?
• How to control for performance (throughput, flow times, response)?
• How to flexibly handle peaks?
• How to integrate them in supply chain concepts?
ROBOTIZED WAREHOUSES

It is not yet so far

We still have a long way to go

But we are on the way

Great opportunities for Research!

Interested in Review Paper?
Mail René de Koster: rkoster@rsm.nl