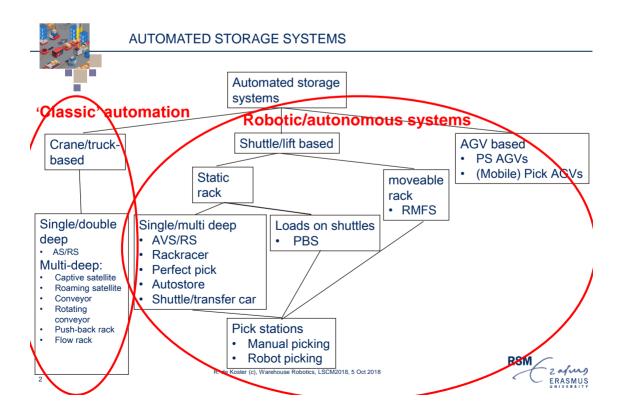
ROTTERDAM SCHOOL OF MANAGEMENT ERASMUS UNIVERSITY

LSCM2018, LOGISTICS SUMMIT, 5 OCTOBER 2018, HONG KONG

WAREHOUSE ROBOTICS:

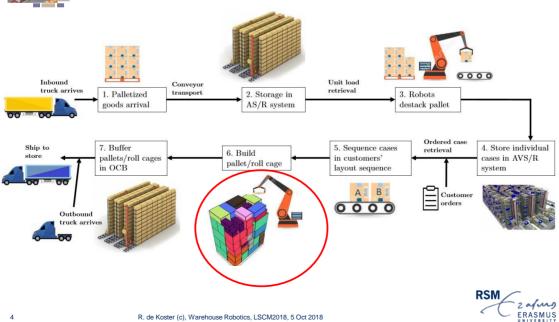
STATE OF THE ART AND RESEARCH OPPORTUNITIES


RENE DE KOSTER ERASMUS UNIVERSITY ROTTERDAM

2018 FRANCQUI CHAIR, UNIVERSITY OF HASSELT

The business school that thinks and lives in the future

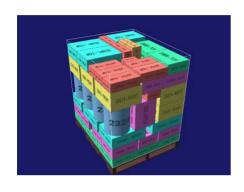
FULLY ROBOTIC WAREHOUSES?

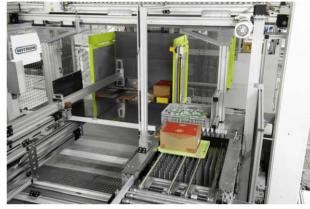


R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

3

FULLY ROBOTIC WAREHOUSES EXIST

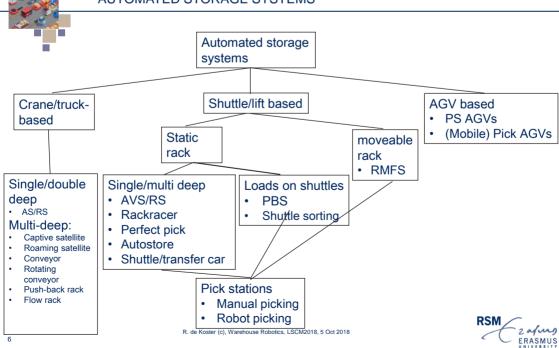


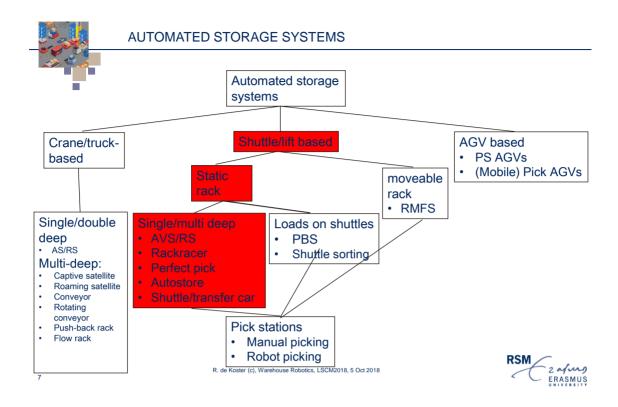


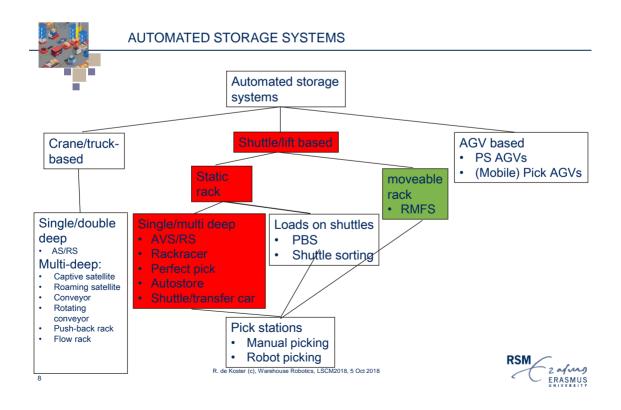
THE LAST FRONTIER: ROBOTIZED ROLL CAGE STACKING

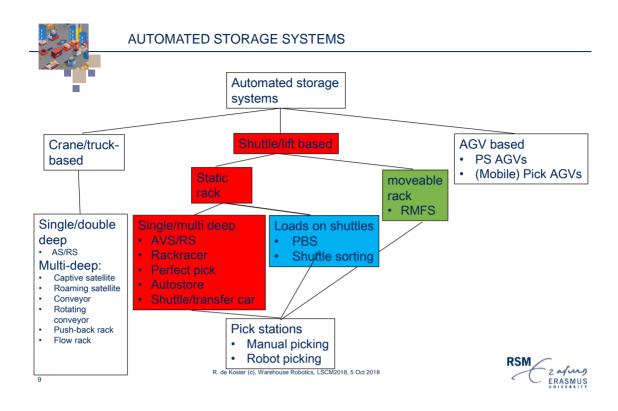
It is already there!

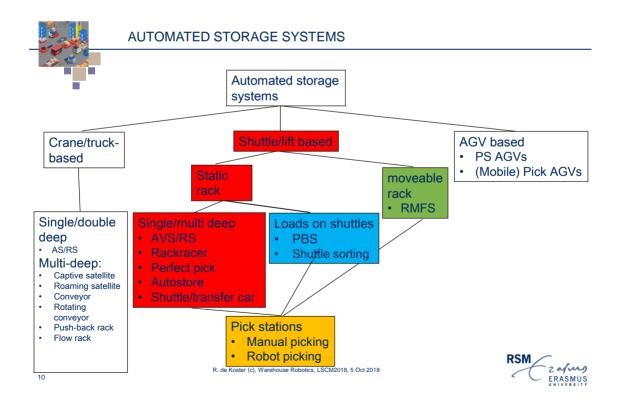
- Picking robots (still slow, expensive)
- Dispensing systems with roll cage stacking (becoming common in warehouses of retail chains)

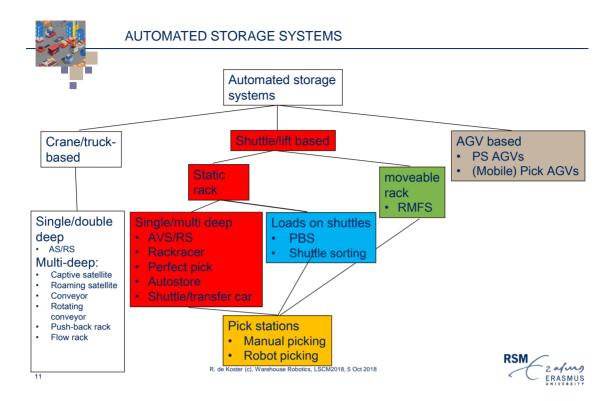


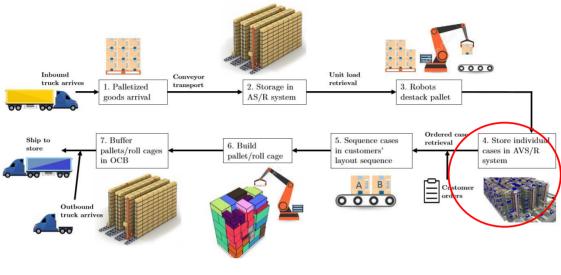



ERASMUS


R. de Koster(c), Warehouse Robotics, LSCM2018, 5 Oct 2018


AUTOMATED STORAGE SYSTEMS




NEW, ROBOTIZED STORAGE/PICKING SYSTEMS

- A. Shuttle based (AVS/R) systems
 - Horizontal (Autostore)
- B. Shuttle based, dynamic racks: Movable robots (RMFS: Kiva)
- C. Loads on shuttles
 - Puzzle-based storage: PBS
 - Shuttle-based sorting
- D. Pick stations
- E. Picking with AGVs
 - PS AGVs
 - Mobile pick AGVs

RSM 2 afus ERASMUS UNIVERSITY

FULLY ROBOTIC WAREHOUSES EXIST

ERASMUS

13

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

A. AVS/R SYSTEMS

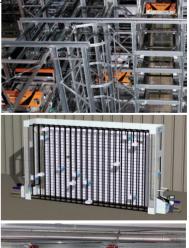
(AUTONOMOUS VEHICLE-BASED STORAGE AND RETRIEVAL)

Horizontal movement only:

- Symbotic
- Knapp
- -Malmborg, 2002
- -Fukanari, Malmborg, 2008
- -Roy et al., 2012, 2014, 2015
- -Marchet et al., 2012
- Savoye

- Vanderlande (Adapto)
- - **Dematic**
- SSI Schafer
- Etc.

Horizontal + vertical movement:


- Autostore (lifting capabilities)
- **OPEX: Perfect Pick**
- Exotec Skypods

Fraunhofer IML (rack creeper)

(c), Warehouse Robotics, LSCM2018, 5 Oct 2018

A. AVS/R SYSTEMS

Horizontal movement only:

- Savoye
- Symbotic
- Knapp
- Vanderlande (Adapto)
- Dematic
- SSI Schafer
- Etc.

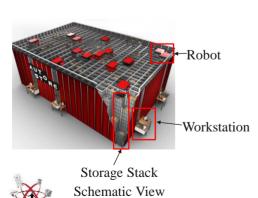

Horizontal + vertical movement:

- Autostore (lifting capabilities)
- OPEX: Perfect Pick
- Exotec Skypods

Horizontal + diagonal movement:

Fraunhofer IML (rack creeper)

RESEARCH ON AUTOSTORE


Zou, De Koster, Xu, Transportation Science, 2018

Research questions

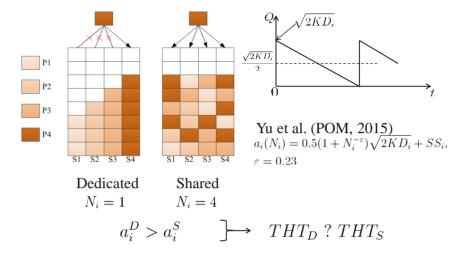
· Dedicated storage, or shared storage?

· Zoned storage or not?

•

Order Queue Q_O Robot
Queue Q_R μ_{l_1} μ_{l_2} μ_{l_3} μ_{l_4} μ_{l_5} μ_{l_5} μ_{l_6} μ_{l_6} Delayed Reshuffling

Delayed Reshuffling


Semi-Open Queueing Network model Aggregation + CTMC analysis RSM

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

ERASMUS

Autostore: Dedicated or Shared storage?

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

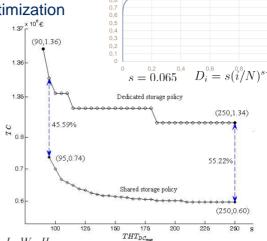
US

Autostore—System cost optimization Given: throughput, storage capacity, #products

$$\min TC(H, r, R, P_A, P_B) = C_R \cdot R + C_{SP} \cdot L \cdot W + C_{FS} \cdot L \cdot W \cdot H$$

$$\begin{cases}
N_{st} \leq L \cdot W \\
THT_{DC}(L, W, H, R) \leq THT_{DC_{max}} \\
L \leq \hat{L}, W \leq \hat{W}, H \leq \hat{H} \\
D_i = s(i/N)^{(s-1)}, i = 1, 2, \cdots, N \\
r = \frac{W}{L} \\
P_A + P_B + P_C = 1, 0 < P_A < 1, 0 < P_B < 1, 0 < P_C < 1 \\
N, \lambda, n_w, K, \tau \text{ are given}
\end{cases}$$
(M.2)

Autostore—System cost optimization

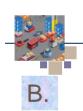

N = 10,000

 $C_{SP} = \text{ } \text{ } 40 \text{ amortized in } 10 \text{ years}$

 $C_{FS} =$ € 500/m² amortized in 30 years

4 pick stations

 $\lambda = 300 \text{ picks/hour}, 10 \text{ sec/pick}$


(M.2)

s=0,065

$$min\ TC(H, r, R, P_A, P_B) = C_R \cdot R + C_{SP} \cdot L \cdot W + C_{FS} \cdot L \cdot W \cdot H$$

$$s.t. \begin{cases} N_{st} \leq L \cdot W \\ THT_{DC}(L, W, H, R) \leq THT_{DC_{max}} \\ L \leq \hat{L}, W \leq \hat{W}, H \leq \hat{H} \\ D_i = s(i/N)^{(s-1)}, i = 1, 2, \cdots, N \\ r = \frac{W}{L} \\ P_A + P_B + P_C = 1, 0 < P_A < 1, 0 < P_B < 1, 0 < P_C < 1 \\ N, \lambda, n_w, K, \tau \text{ are given} \end{cases}$$

B. ROBOTIC MOBILE FULFILMENT SYSTEMS

MOVABLE ROBOTS (AGV)

AGVs transporting racks

- Kiva (Amazon Robotics)
- Grey Orange
- Swisslog/Grenzebach
- Scallog
- Suning
- Etc.

RECENT RESEARCH ON RMF SYSTEMS

Lamballais et al. (EJOR, 2017)
 Objective: minimizing order throughput time.

Zou et al. (EJOR, 2017)
 Objective: impact of battery charging policies


Boysen et al.(EJOR, 2017)
 Objective: determine slotting strategy for pods

• ...

21

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

C. LOADS ON SHUTTLES: PUZZLE-BASED STORAGE

LOADS ON SHUTTLES - SORTING

4	0			127			124			130			124			5
	121	7	8	130	10	118	12	13	14	124	16	17	127	130	20	127
	127	23	24	127	26	27	118	29	30	31	118	118	124	35	118	37
	121	39	118	41	42	130	124	45	46	133	48	127	50	121	52	130
	130	133	133	57	118	59	60	61	62	63	64	65	121	67	68	69
	121	71	133	124	74	133	76	127	78	79	80	124	82	133	130	85
	86	87	88	89	121	91	121	93	127	95	96	97	130	99	100	101
	130	103	104	121	106	107	124	121	110	127	112	133	114	115	116	133
	118	119	118	121	122	123	124	124	126	127	121	129	130	131	132	133

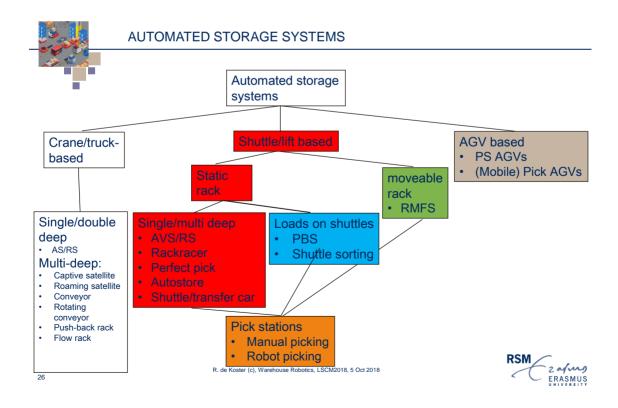
GridStore/GridSort - Gue/Furmans

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

23

PUZZLE-BASED STORAGE/SORTING

Little literature yet


- Gue, Kim, NRL, 2007: optimal movement patterns
- Gue, Furmans, Seibold, Uludag, IEEE T on Automation Science, 2014: deadlock free gridlock control algorithm
- Zaerpour, Yu, De Koster, Transportation Science, 2017: optimal design

RSM 2 afung ERASMUS UNIVERSULT

ERASMUS

D. ADVANCED PICK STATIONS Inbound Unit load Conveyor retrieval truck arrives 1 Palletized 2. Storage in 3 Robots goods arrival AS/R system destack pallet Ordered case Ship to 7. Buffer 5. Sequence cases 4. Store individual retrieval 6. Build pallets/roll cages in customers' cases in AVS/R pallet/roll cage in OCB layout sequence system Customer **RSM**

R. de Koster (c). Warehouse Robotics, LSCM2018, 5 Oct 2018

E. PICKING WITH AGVS MANUAL WORKING WITH THE ROBOT/AGV

Fetch Robotics

27 R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

MODELING PS-AGVS

RSM 2 afus ERASMUS UNIVERSITY

ROBOTIZED: FULLY AUTOMATED PICKING?

TORU - Magazino

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

RESEARCH OPPORTUNITIES

RESEARCH OPPORTUNITIES

Most systems shown have hardly been researched Only (to some extent): RMF, AVS/R systems

Opportunities:

- · Manual order picking with AGVs
 - Routing, control, assignment
- Integrated systems: AVS/R system with order picking
- Interaction man robot: Operator 4.0

31

R. de Koster (c), Warehouse Robotics, LSCM2018, 5 Oct 2018

RESEARCH OPPORTUNITIES

Most systems shown have hardly been researched Only (to some extent): RMF, AVS/R systems

Opportunities:

- Manual order picking with AGVs
 - Routing, control, assignment
- Integrated systems: AVS/R system with order picking
- Interaction man robot: Operator 4.0

Research questions:

- How do they compare to other (manual) systems?
- How to divide work in robot and human tasks?
- · How do humans perform with such systems?
- · How to select systems?
- How to design: layout, #workstations, #robots?
- · How to control for performance (throughput, flow times, response)?
- · How to flexibly handle peaks?
- · How to integrate them in supply chain concepts?

RSM 2 afms ERASMUS

ROBOTIZED WAREHOUSES

It is not yet so far

We still have a long way to go

But we are on the way

Great opportunities for Research!

Interested in Review Paper? Mail René de Koster: rkoster@rsm.nl

